RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. SECOND SEMESTER EXAMINATION, MAY-JUNE 2013

FIRST YEAR

MATHEMATICS (General) [For Economics]

Date : 24/05/2013 Time : 11am - 2pm

Paper : II

Full Marks : 75

[Use separate Answer Books for each group]

Group-A

1.		•	r <u>any two</u> :	2×10
	a)	1)	If a function has a finite derivative at a point, prove that it is continuous at that point. Show also by an example that the converse is not necessarily true.	3+2
		ii)	Find $\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x}$.	5
	b)	i)	State and prove Lagrange's mean value theorem.	6
		ii)	Are the conditions of Rolle's theorem satisfied for the function $g(x) = x^2$ in $2 \le x \le 3$?	4
	c)	i)	Express $\int_{a}^{b} e^{x} dx$ as the limit of a sum and evaluate it.	5
		ii)	Find the reduction formulae for $\int \sin^m x \cos^n x dx$ (where <i>m</i> , <i>n</i> are +ve integers, greater	
			than 1) and evaluate $\int \sin^4 x \cos^2 x dx$.	5
2.	Answer any <u>four</u> :			4×5
			If $f(x) = 2 x + x-2 $, find $f'(1)$.	3
			Write the Geometrical interpretation of Rolle's theorem.	2
	b)	Sho	by that the maximum rectangle inscribed in a circle is a square.	5
	c)	Fin	d the maximum value of $f(x) = x^{\frac{1}{x}}$.	5
			1	5 5
	d)	Inte	d the maximum value of $f(x) = x^{\frac{1}{x}}$.	
	d)	Inte Inte	d the maximum value of $f(x) = x^{\frac{1}{x}}$. egrate: $\int \frac{\sin x}{\sin x - \cos x} dx$.	5
	d) e)	Inte Inte Sta	d the maximum value of $f(x) = x^{\frac{1}{x}}$. egrate: $\int \frac{\sin x}{\sin x - \cos x} dx$. egrate by definition: $\int_0^1 2^x dx$.	5

Group-B

<u>Unit - I</u>

3.	Answer any <u>three</u> :) Find the rank of the following matrix:	3×5 5
	$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 5 & 9 & 10 \end{pmatrix}$	
	$(5 \ 9 \ 10)$	
	b) Obtain the fully reduced normal form of the matrix:	5
	$\begin{pmatrix} 0 & 0 & 1 & 2 & 1 \end{pmatrix}$	
	$ \begin{pmatrix} 0 & 0 & 1 & 2 & 1 \\ 1 & 3 & 1 & 0 & 3 \\ 2 & 6 & 4 & 2 & 8 \\ \end{pmatrix} $	
	$\begin{pmatrix} 2 & 0 & 1 & 2 \\ 3 & 9 & 4 & 2 & 10 \end{pmatrix}$	

c) What is elementary matrices? Express the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 3 & 3 & 0 \\ 6 & 2 & 3 \end{bmatrix}$ as a product of elementary

matrices.

d) Solve, if possible r + 2y + z

$$x+2y+z-3w=1$$

$$2x+4y+3z+w=3$$

5

5

5

 2×5

5

5

 2×5

2

3

5

$$3x + 6y + 4z - 2w = 4$$

- e) Determine the condition for which the following system of equation has(i) Only one solution, (ii) No solution, (iii) Many solution
 - x+2y+z=1 2x+y+3z=bx+ay+3z=b+1
- 4. Answer any two :
 - a) Define Δ and *E* operators. Prove that $\Delta[Ef(x)] = E[\Delta f(x)]$. 1+1+3

b) Show that
$$\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$$
. 5

- c) Formulate the difference equation where given, $u_x = (C + Dx) \cdot 3^x$.
- d) Solve the difference equation $u_{x+2} 5u_{x+1} + 6u_x = 2x^2 + 3$, where the interval of difference is unity.

<u>Unit - II</u>

5. Answer any <u>two</u> :

a) i) Determine the order and degree of the following differential equation

$$\left(\frac{d^2 y}{dx^2}\right)^3 + \frac{dy}{dx} = x^2.$$

- ii) Eliminate the parameters a, b from the following primitive to construct a differential equation $xy = ae^{x} + be^{-x}$
- b) What is exact differential equation? Show that the given differential equation is exact and hence solve it. $(y^2 e^{xy^2} + 4x^3)dx + (2xye^{xy^2} - 3y^2)dy = 0.$

c) Solve:
$$x \cos x \frac{dy}{dx} + y(x \sin x + \cos x) = 1$$
.

d) Solve:
$$xy - \frac{dy}{dx} = y^3 e^{-x^2}$$
. 5

80參Q3